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This article explores the performance and carbon footprint reduction of
geopolymer mortar (GM) that incorporates eggshell powder (ESP) and
rice husk ash (RHA) as sustainable alternatives to traditional binders.
Using response Surface Methodology (RSM), ESP and RHA were
added at volumetric percentages from 0% to 30% as partial
replacements for GGBS. The experimental findings revealed that the
inclusion of RHA and ESP significantly enhances compressive
strength, particularly at optimal dosages, with the highest recorded
strength reaching 48 MPa. RSM effectively predicted compressive
strength values, aligning well with experimental data. Furthermore,
machine learning models, including Gaussian Process Regression
(GPR), Artificial Neural Networks (ANN), and Gradient Boosting
(GB), were employed to analyze the compressive strength predictions,
with GPR demonstrating superior accuracy. An ecological assessment
indicated that using RHA and ESP can lower CO: emissions compared
to traditional materials, thereby promoting more sustainable
construction practices. Finally, the dataset of 606 compressive strength
results validated the effectiveness of the GPR, ANN, and GB models,
all showing high predictive accuracy (R? > 0.85), with the GPR model

outperforming the others.
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1. INTRODUCTION

Portland cement (PC) significantly contributes to global CO, emissions, accounting for about 5-7% of the total
emissions, driven by population growth and infrastructure development. This highlights the urgent need for
sustainable alternatives due to its high energy consumption and raw material usage alternatives (Abdellatief et al.,
2024c; Adamu et al., 2024a; Shah et al., 2021). In response, various high-performance concretes (HPC) have been
developed, including PC-based ultra-high-performance concrete (PC-UHPC), known for its compact microstructure,
strength, and long-term stability, making it suitable for extreme environments like nuclear waste storage. Recent
trends also favor high-performance geopolymer concrete and ultra-high-performance geopolymer concrete as
sustainable alternatives (Abdellatief et al., 2024b; Abd Ellatief et al., 2023; Tahwia et al., 2023).

Geopolymer concretes (GPCs) consist of two main components: precursors and an alkaline activated solution
(AAS). The precursors, which must contain alumino-silicate, often come from by-product wastes like ground
granulated blast-furnace slag (GGBFS) and metakaolin. Several parameters influence the fresh and mechanical
performance of GPCs, including the chemical composition, fineness of raw materials, AAS-to-binder ratio, AAS
concentration, and curing conditions such as time and temperature (Albidah et al., 2022; Xiao et al., 2020). The
composition of precursors plays a crucial role in GPC performance. Lower calcium (Ca) content typically requires
higher curing temperatures, while increased Ca levels can reduce setting times and improve strength at lab
temperatures. The silica (Si) to alumina (Al) ratio (Si/Al) is also significant; higher ratios generally enhance
compressive strength. However, GPC application domains are constrained by this Si/Al ratio, which can be used to
classify different GPC types (Abd Ellatief et al., 2023; He et al., 2016; Liu et al., 2022).

Incorporating recycled materials into concrete production can significantly reduce CO, emissions. Rice straw and
husk are major agricultural wastes, with a global annual output of around 550 million tons. Despite this, their
utilization rates remain low, potentially leading to environmental pollution if not managed properly. Many initiatives
have aimed to incinerate rice straw and husk for power generation, resulting in substantial quantities of rice husk ash
(RHA). However, only a small portion of RHA is currently used as a supplementary material. RHA is primarily
composed of silica, found in both amorphous and partially crystalline forms, along with carbon as a major impurity
and trace elements like potassium and calcium. Its pozzolanic activity and strong capacity for heavy metal sorption
make RHA a promising alternative precursor for adjusting the SiO, content in geopolymer concrete. This study
focuses on exploring RHA as a sustainable precursor (Hesami et al., 2014; Pandey and Kumar, 2019; Wang et al.,
2021). Few studies have explored the use of RHA and eggshell powder (ESP) as precursors in geopolymer concrete,
despite the potential benefits of recycling these by-product wastes. Utilizing RHA and ESP not only promotes
sustainability in construction but also addresses ecological issues. To the authors' knowledge, there have been no
recent investigations specifically focused on RHA and ESP as precursors for geopolymer concrete. This study aims to
develop geopolymer concrete using RHA and ESP, examining the extent of the geopolymerization reaction with
varying dosages of these materials. Additionally, the research investigates how the content of these waste materials

affects porosity, water absorption, and compressive strength. Finally, the CO, emissions associated with the produced
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2. EXPERIMENTAL PROGRAM
2.1 Materials

The mixtures analyzed in this study were prepared using GGBS, RHA, ESP, natural sand, and superplasticizer.
2.1.1 GGBFS

Ground granulated blast-furnace slag (GGBFS), used as the main precursor, was sourced from an iron factory in
Helwan, Egypt. Its specific gravity and fineness were measured at 2.89 g/cm3 and 4.888 g/cmz, respectively. The
pozzolanic activity indexes of GGBFS were 55.5 at 7 days and 74 at 28 days. X-ray fluorescence (XRF) analysis of
GGBFS is presented in Fig. 1.
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Fig. 1. Oxides of the used materials (wt., %) by XRF

2.1.2 Rice husk ash (RHA)

Rice husk ash (RHA) was produced by incinerating the straw at 600 °C. The resulting ash is dark gray with a specific
gravity of 2.17. Chemical analysis of RHA was performed using X-ray fluorescence (XRF), with results summarized

in Fig. 2.

68.3

6.51 8.69

K20

10 4.41
o LN
CaO

Sio2 )
Oxides

Fig. 2. Oxides of the RHA (wt., %) by XRF
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2.1.3 Eggshell powder (ESP)

Eqggshell powder (ESP) used in this study has a specific gravity of approximately 2.70 g/cm?3 and a surface area that
enhances its reactivity. The eggshells were collected, cleaned, and dried before being ground to a fine powder and the

major component in its chemical oxides is CaQO, as illustrated in Fig. 3.
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Fig. 3. Oxides of the ESP (wt., %) by XRF

2.1.4 River sand, alkali activation solution, and super-plasticizer

River sand, used as fine aggregate in this study, has a grain size of less than 2 mm, adhering to the C33/C33M
Standard Specification for Concrete Aggregates. The water absorption rate of the river sand is 1.02%, and its fineness
modulus is 3.03. The alkali activators consisted of a mixture of sodium hydroxide (NH) solution and sodium silicate
(SS). A 14 M NaOH solution was prepared and allowed to cool for 24 hours before being combined with SS. The
composition of SS is 29.22% SiO2, 13.66% Na20, and 57.12% H.0O (by mass), with a density of 1.39 g/cm*. This
mixture was then allowed to mature for one day prior to its use in the geopolymerization process. For this research,
Sika ViscoCrete®-3425 Performance Superplasticizer was utilized as a concrete admixture. It complies with the SP
standards specified in ASTM C-494 Types G and F, as well as BS EN 934. The density of the superplasticizer is 1.08
+ 0.05 kg/liter, and it has a pH of 4.0.

2.1.5 Mixture proportions

In the current investigation, ten mixtures were formulated to assess the mechanical and durability properties of GM
incorporating RHA and ESP, including a control mixture designated as M1. The mixtures involved the substitution of
the primary precursor, GGBFS, with RHA at levels of 0% to 30%, and ESP at levels of 0% to 30% using response
surface methodology (RSM) (Abdellatief et al., 2023; Cai et al., 2022). Three main variables were addressed to
enhance the performance of the GM including ESP content, RHA dosage and SS/NH ratio. The mix proportions of

the prepared mixtures are detailed in Table 1.
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Table 1. Proportions of the prepared mixtures.

Mixture ID GGBFS RHA ESP ESP Sand SP SS/NH
kg/ m® % kg/ m® % kg/ m®

M1 700 0 0 0 0 1020 24 2.5
M2 578 0 0 175 97 1020 24 1.63
M3 490 0 0 30 167 1020 24 2.5
M4 630 0 0 10 55 1020 24 1

M5 420 30 173 10 55 1020 24 1.03
M6 280 30 173 30 164 1020 24 1.98
M7 490 30 173 0 0 1020 24 2.5
M8 590 15 87 1.0 5 1020 24 1.69
M9 483 15 87 16 89 1020 24 2.47
M10 385 15 87 30 167 1020 24 1

2.2 Techniques for sample preparation

The preparation technique utilized in this investigation was designed to minimize water absorption by
the dry compounds to enhance the flowability, as shown in Fig. 4. Initially, the solid materials were
dry-blended in the blender for 1.5 min. Subsequently, 50% of AAS and 50% of the SP, were
combined and gradually added to the mixer, with mixing continuing for an additional 2.5 mins. In the
next phase, the remaining AAS and SP were introduced, and mixing was conducted for an additional
3.0 mins. Once mixture was complete, fresh samples were poured into molds. To enhance compaction
and eliminate air bubbles, the molds were placed on a vibrating table after pouring the fresh GM.
Previous research has shown that curing geopolymers at elevated temperatures, particularly between
60-80 °C, is one of the most effective methods (Abdellatief et al., 2024a; Adamu et al., 2024Db).
Therefore, the GM samples were cured in a hot-air furnace at 65 °C for 48 hours before being stored

at room temperature until testing (Ahmed M Tahwia et al., 2024; Ahmed M. Tahwia et al., 2024).

200



ISSN 2537_ 0715 IJSRSD (2024): Volume 7, Issue 1

50% AAS Remaining AAS
) /
@)
X X — —— ——

e—_— 2

120 £ 5r/min 160 £ Sr/min

For 2.5 mi For 1.5 mi £ 5
2+
BETD
e O
~ ° 9
£53
gy il
Z. BZ=
i @ Q\ 5 & H
3 +23
= -
Heat SEg
- =]
. curing P
- or 1 min

Fig. 5. Preparation process of GM

2.3 Testing methods
The physical, mechanical properties, and durability of the GM mixtures were systematically evaluated in accordance
with relevant ASTM standards. The compressive strength (CS) of cubic samples (50 mm x 50 mm x 50 mm) was
determined using a standard compression machine with a loading rate of 1.2 kN/s. Recognizing that the strength of
ambient-cured geopolymers generally increases with age (Abdellatief et al., 2024a, 2023), tests were conducted at 7
and 28 days to monitor the strength development of the GM. The dry density of the mixtures was evaluated in
compliance with ASTM C138/C138M.

2.4 Response surface methodology (RSM)
In the field of scientific and mathematical techniques for optimization, RSM is a frequently utilized approach. To
assess the practical relationship between the separate variables and the outcome, a fractional factorial research
method is employed. The importance of the developed model is evaluated through the R2 values, while the influence
of specific factors is determined by computing the F-value. A higher F-value indicates that the related parameters
have a more significant impact on the study's results (Fig. 5). The group developed numerical models using
regression analysis with multiple variables based on findings from experiments on concrete characteristics. The
polynomial simulation derived from RSM is represented in Equation 1. The anticipated response value for the
established model is denoted by Y, with o serving as the intercept and f: and B acting as coefficients for linear
effects. Furthermore, Bi1 and P22 indicate the parameters for quadratic effects, while PBi2 represents the interaction

effect between the variables.

y =Bo + X Bi X; +X Bux? +X BijX; X 1)
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Fig. 5. A visual illustration of CCD
2.5 ML Techniques
ML techniques can be categorized into three groups: supervised, unsupervised, and semi-supervised. In this study,
only supervised algorithms were utilized since the objective variable was identified post-data collection. Supervised
ML techniques, which use labeled training data for accurate predictions, were employed to derive meaningful insights
from the dataset. Specifically, methods like GPR, ANNs, and GB were applied to forecast CS of GM.
2.5.1 Gaussian process model (GPR)
GPR is an effective statistical method for predicting GM based on input parameters. Unlike traditional regression
models that rely on fixed functional forms, GPR is a non-parametric approach that models the entire distribution of
potential functions. It uses Bayesian inference to combine prior knowledge with observed data, making it adept at
handling complex, nonlinear relationships between input and output variables. GPR not only provides point
predictions but also generates confidence intervals, helping to assess the reliability of those predictions. Its flexibility
allows it to work with various data types, including noisy or sparse datasets common in concrete strength tasks
(Abdellatief et al., 2024c).
2.5.2 ANNs (ANNSs)
ANNSs are a key method in Al, valued for their simplicity, high performance, and low computational needs. Various
types exist, including feedforward networks, recurrent networks, and radial basis function networks, all of which
analyze relationships between independent and dependent variables. Among these, the multilayer perceptron (MLP)
is particularly popular. An MLP comprises an input layer, one or more hidden layers, and an output layer, with
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neurons in each layer but no direct connections between neurons of the same layer. The input and output layers have

a number of neurons that match their respective variables, while the hidden layer's neuron count can be adjusted for
desired outcomes. During training, datasets are inputted to refine the network's weights and biases, minimizing errors
by comparing predicted outputs to actual values. MLPs are adaptable, updating their models with new information
and effectively representing complex relationships. Their ability to capture nonlinear connections makes them
especially effective for predicting concrete strength, improving accuracy across various scenarios (Abdellatief et al.,
2024b, 2024c).
2.5.3 Gradient boosting (GB)

Boosting is an ensemble learning technique that transforms a series of weak learners into a strong predictive model. It
works by sequentially training learners, where each new model focuses on correcting the errors made by the previous
ones. The training data distribution is adjusted based on the performance of each base learner, ensuring that
misclassified samples receive more attention in subsequent iterations. Eventually, all weak learners are combined to
create a robust final model. GB excels in predicting the CS of GM due to its capability to enhance model
performance, manage complex relationships, and deliver precise predictions through ensemble learning (Abdellatief
et al., 2024b, 2024c).
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Fig. 6. Schematic view of ML model

2.5.4 Construction of ML models
The prediction process outlined in Figure 4 involves three key steps: data collection, algorithm implementation, and
model validation. First, data was gathered based on the chosen input and output variables. This dataset was then split
into a training set (75%) and a testing set (25%). The training set was used to create an effective ML model, while the
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testing set validated its performance. Figure 5 displays the twelve input features utilized. Three machine learning

models—GPR, ANNs, and GB—were developed to predict the CS of GM (Paruthi et al., 2023).

2.5.5 Models Evaluation

To evaluate the models' accuracy, several performance criteria were considered, as outlined below:

2 _ 1 _ Zii-9)*
Re=1 Liyi—y)? (1)
1 ~
MAE = —¥i_1ly: — 91l )

RMSE = \/% XGRS AL C)

where y;, ¥;and y; represent the true, predicted, and average CS results of the GM, respectively.

3. RESULTS AND DISCUSSION

3.1 Dry density

The GM samples were first placed in an electric furnace at a temperature of 100 °C +5 °C for one day to facilitate
drying. Afterward, the samples were cooled to reach a temperature of 25 + 2 °C. As shown in Fig. 7, the dry densities
were measured to assess the impact of waste incorporation. The control mix M1 demonstrated the highest dry density
at 2072 kg/m3, while the M6 mixture, which incorporated both types of waste, exhibited the lowest dry density at
1996 kg/ms, marking a reduction of 3.53%. The inclusion of these wastes led to a slight decrease in dry density,
attributable to their lower specific gravities. Among the two, ESP had a more significant effect on reducing dry
density. The addition of RHA resulted in an approximate 1.88% decrease in dry density, whereas the contribution
from ESP was around 1.58%. This difference can be attributed to the specific gravities of RHA and (Abdellatief et
al., 2024b; Ifzaznah et al., 2024). as well as the more porous microstructure of samples containing RHA compared to
those with ESP, which will be elaborated on further (Hesami et al., 2014; Pandey and Kumar, 2019; Wang et al.,
2021).
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Fig. 7. Variation of dry density in mixes relative to waste replacement ratio

3.2 Response surface for compressive strength (CS)

Fig. 8 illustrates the compressive strength (CS) of the samples in relation to the volume percentages of ESP and RHA.
The results indicate that the compressive strength increases with the volume percentage of ESP and RHA (Table 2),
peaking at 5% for both materials, particularly with a high SS/NH ratio. The data shows that mixtures with a greater
SS/NH ratio exhibit significantly higher compressive strength, achieving a maximum of 1.6. For example, the
mixture with a 1.7 SS/NH ratio recorded a compressive strength of 48.0 MPa, compared to the control mix's 38.8
MPa, representing a 23.71% improvement. The highest compressive strength achieved, 48 MPa, resulted from a
blend containing 5% RHA and 1.0% ESP at a low level of ESP (around 1%). Furthermore, the results from the
experiments validated the findings from the Response Surface Methodology (RSM), as shown in Table 3. The

predicted compressive strength values closely matched the experimental results, confirming that RSM provides an

accurate prediction of compressive strength. (He et al., 2016; Pandey and Kumar, 2019; Wang et al., 2021).
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Fig. 8. Compressive strength results of the prepared Mixtures

Table.2. Input and output Parameters of the prepared Mixtures using RSM

Name Units Type Changes Std. Dev. Low High
RHA % Factor Hard 0 0 30
ESP % Factor Easy 0 0 30

SS/NH Factor Easy 0 1 2.5

CS (7 days) MPa Response 17.9 34.8

CS (28 days) MPa Response 23.1 48.6

Table.3. Compressive strength results of the prepared Mixtures
Group Factor 1 Factor 2 Factor 3 Response 1 Response 2
Run a:RHA B:ESP C:SS/NH CS (7 days) CS (28 days)
% % MPa MPa
1 1 0 0 2.5 29.6 38.8
1 2 0 17.4 1.63169 26.3 31.2
1 3 0 30 2.5 22.1 26.5
1 4 0 0 1 229 27.8
2 5 30 9.9 1.03 24.6 33.6
2 6 30 29.55 1.9825 17.9 23.1
2 7 30 0 25 26.9 31
3 8 15 0.75 1.6975 33.2 48.6
3 9 15 16.05 2.47 34.8 41.33
3 10 15 30 1 29.6 37
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3.3 Machine learning analysis

Fig. 9 presents the experimental results alongside the predictions from three ML models regarding the CS of
geopolymer concrete. The predicted CS values closely matched the experimental data for both training and testing
phases (Abdellatief et al., 2024b, 2024c; Xiao et al., 2021). Fig. 10 displays the residuals of CS results of three
models. The results indicated that the GPR model achieve high percentage of accuracy to predict the CS of
geopolymer concrete. Additionally, the average R2 values for the GPR, ANN, and Extreme GB models were 0.97,
0.96, and 0.84, respectively, in the training set, and 0.84, 0.41, and 0.67 in the testing set. The GPR model exhibited
the highest RZ, indicating its superior performance among the models evaluated as presented in Table 3.
Consequently, the GPR model allows for accurate predictions of CS. In contrast, the ANN and GB models would

require additional data and numerous experiments to achieve reliable predictions.

120 | 120}

* Observations ¢ Observations . .

Perfect prediction L] i Perfect prediction 4
L . . .

100 | e . :. .

8o

=]
=]
.
s
o
L)
.
.
o®
.
h 3
L
.

60 [

40+ . *ee o

20 N 'r‘ N -

Predicted response
=23
o
G
Predicted response
L
L ]

IS
=

T
¢ .

20 , 2 1 = .

. 40+

I I I I I I 60 [/ I | I I I I I I I
0 20 40 60 80 100 120 60 40 20 0 20 40 60 80 100 120
True response True response

a) b)

T T T
120 | * Observations
Perfect prediction

100 -

80T .

60 - e s o ° .
ot AU

o  oommuml: ‘iﬁ‘-'- (I1]

Predicted response

20 "%

IIJ 2‘0 4‘0 BID I;D 1[;0 12ID
True response
c)
Fig. 9. Correlation diagrams of a) GPR, b) ANN, c¢) GB model
207



ISSN 2537_0715

T
40 - .o
.
.
30
.
20 .
w 1or .
Q « 0
ry :
- e
T o 3 Ll
3 .
‘B
@
& .0
-20
=30 [ .
.
-40
L L L L L L L
0 20 40 60 80 100 120

True response

Residuals (CS)

100

-100 [

IJSRSD (2024): Volume 7, Issue 1

L I
0 20 40 60

True response

T
60

Residuals (CS)

-40 -

-60 - I

a)

! I !
20 40 60

True response

c)

! ! I
80 100 120

L
80

I I
100 120

Fig. 10. The residuals of CS of GM: a) GPR model, b) ANN model, and c) GB model.

Table 3. Best results of R, RMSE and MAE for three ML models

Best
Models

GPR ANN GB
B2 Training 0.97 0.96 0.84
Testing 0.84 0.41 0.67
Training 2.09 2.69 5.80

MAE _
Testing 4.69 7.70 7.79
Training 3.65 4.16 8.44

RMSE .
Testing 8.28 16.0 12.02
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Fig. 11 illustrates the average relevance values of three models for each attribute, highlighting that the percentage of

GGBS is the most critical factor influencing the CS predictions. This finding is consistent with previous
experimental studies [47-49], which demonstrated that steel fibers significantly enhance the strength and
microstructural properties of geopolymer. Among the models assessed, the GPR model exhibited the best
performance, identifying the accurate sand and water content as the second and third most important features,
respectively. While, the presence of coarse aggregate in geopolymer concrete contributes to a reducing the
geopolymerization process, which ultimately decreases the material's CS strength and durability. Furthermore, the
formation of geopolymer gel in concrete is greatly enhanced by a substantial presence of soluble silicates (such as
NaOH and Na,SiOs) in alkali-activated concrete (R and A, 2020; Tiong et al., 2020; Xiao et al., 2020; Zhao and L.,
2022).
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Fig. 11 The average relevance values of three models for each input parameter.

3.4 Ecological assessment of the HPGC Samples

Average estimates for the ecological assessment of the components used in the GM samples were gathered from the
literature and are presented in Table 4. According to this table, NaOH, GGBFS, and SPs exhibit higher CO-
emissions. The embodied energy (EE) and emission carbon (EC) values for the mixtures were calculated using data
from credible sources, as detailed in Tables 5 and 6 (Abdellatief et al., 2023b, 2023c; Abd Ellatief et al., 2023).
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Table 4. Inventory of cost, CE, and EE of used materials (Abd Ellatief et al., 2023; Gao et al., 2017; Hafez

etal., 2021; Meng et al., 2019; Stengel and Schiel3l, 2014; Swathi and Vidjeapriya, 2023).

ID Component CE (kg/kg) EE (MJ/kg)
1 GGBFS 0.019 1.588

3 ESP 0.88 0.02021

4 RHA 0.133 131

5 Fine aggregate 0.001 0.022

6 SP 0.22 115

7 Water 0.0002 0.01

8 NaOH 0.046 1.1148

9 Na,SiO; 1.213 0.000288

Fig. 13 illustrates the overall EC and EE of the prepared geopolymer mixtures. Notably, the control sample, which
contains 30% RHA, showed the lowest EE (424.95 MJ/kg). The findings of this study suggest that using alternative
precursor materials such as RHA can significantly reduce the environmental impact of geopolymer materials.
However, it is important to acknowledge certain limitations, including challenges in generalizing results due to
regional variations and the influence of selected functional units. Further exploration of the relationship between
environmental performance and cost-effectiveness, along with advancements in production technologies, could

enhance our understanding and promote sustainability in the construction industry.

Table 5. Calculated CE of prepared mixtures

Mixture D GGBFS RHA ESP  ESP Sand SS NH SP  Total CE
% % kag/kg

M1 13.3 0 0 0 0 1.02 406.355 2.99 528 428945
M2 10.982 0 0 175 291 1.02 406.355 299 528  429.537
M3 9.31 0 0 30 5.01 1.02 406.355 2.99 528  429.965
M4 11.97 0 0 10 1.65 1.02 406.355 2.99 528  429.265
M5 7.98 30 3.46 10 1.65 1.02 406.355 2.99 528 428.735
M6 5.32 30 553.6 30 4.92 1.02 406.355 299 528 979.485
M7 9.31 30 0 0 0 1.02 406.355 2.99 5.28 424955
M8 11.21 15 38.28 1 0.15 1.02 406.355 2.99 5.28  465.285
M9 9.177 15 48.72 16 2.67 1.02 406.355 2.99 5.28 476.212
M10 7.315 15 0 30 5.01 1.02 406.355 2.99 528  427.97
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Table 6. Calculated EE of prepared mixtures

GGBFS RHA ESP ESP Sand SS NH SP Total CE
Mixture 1D
% % ka/kg
M1 1111.6 0 0.00 0 0.000 22.440 0.096 72.462 276.000 1482.59
M2 10.98 0 0.00 175 1960 22.440 0.096 72.462 276.000 383.941
M3 9.310 0 0.00 30 3.375 22440 0.096 72.462 276.000 383.684
M4 11.970 0 0.00 10 1.112 22.440 0.096 72.462 276.000 384.080
M5 7.980 30 226.6 10 1.112 22.440 0.096 72.462 276.000 606.720
M6 5.320 30 226.6 30 3.314 22440 0.096 72.462 276.000 606.263
M7 9.310 30 226.6 0 0.000 22.440 0.096 72.462 276.000 606.938
M8 11.210 15 113.9 1 0.101 22.440 0.096 72.462 276.000 496.280
M9 9.177 15 113.9 16 1.799 22.440 0.096 72.462 276.000 495.944
M10 7.315 15 113.9 30 3.375 22440 0.096 72.462 276.000 495.659
1600.000 1200
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Fig. 13. Results of overall EC and EE of the prepared GM samples.

4. CONCLUSIONS
1. The use of RHA and ESP in geopolymer concrete promotes recycling and addresses ecological issues,
contributing to sustainable construction practices.
2. Optimal incorporation of RHA and ESP significantly enhances the compressive strength of geopolymer
concrete, with maximum strength reaching 48 MPa at specific ratios.
3. Response Surface Methodology (RSM) accurately predicts compressive strength based on varying
dosages of RHA and ESP, validating the experimental results.

4. Among the machine learning models used, Gaussian Process Regression (GPR) exhibited the highest
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accuracy in predicting compressive strength, highlighting the potential of advanced analytical techniques

in material science.
5. The ecological assessment indicates that geopolymer concrete incorporating RHA and ESP results in
lower CO: emissions, supporting environmental sustainability.
6. Further studies should focus on the long-term performance of geopolymer concrete with these materials
and explore the relationship between environmental impact and cost-effectiveness.
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