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This article explores the performance and carbon footprint reduction of 

geopolymer mortar (GM) that incorporates eggshell powder (ESP) and 

rice husk ash (RHA) as sustainable alternatives to traditional binders. 

Using response Surface Methodology (RSM), ESP and RHA were 

added at volumetric percentages from 0% to 30% as partial 

replacements for GGBS. The experimental findings revealed that the 

inclusion of RHA and ESP significantly enhances compressive 

strength, particularly at optimal dosages, with the highest recorded 

strength reaching 48 MPa. RSM effectively predicted compressive 

strength values, aligning well with experimental data. Furthermore, 

machine learning models, including Gaussian Process Regression 

(GPR), Artificial Neural Networks (ANN), and Gradient Boosting 

(GB), were employed to analyze the compressive strength predictions, 

with GPR demonstrating superior accuracy. An ecological assessment 

indicated that using RHA and ESP can lower CO₂ emissions compared 

to traditional materials, thereby promoting more sustainable 

construction practices. Finally, the dataset of 606 compressive strength 

results validated the effectiveness of the GPR, ANN, and GB models, 

all showing high predictive accuracy (R² > 0.85), with the GPR model 

outperforming the others. 
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( انزٌ َشخًم عهً GMَذسط هزا انًقبل الأداء وانحذ يٍ انبصًت انكشبىَُت نًلاط انضُىبىنًُش )

( كبذائم يغخذايت نهًىاد انشابطت انخقهُذَت. RHA( وسيبد قشش الأسص )ESPيغحىق قشش انبُض )

٪ إنً 0بُغب حضًُت يٍ  RHAو ESP(، حًج إضبفت RSMببعخخذاو يُهضُت عطح الاعخضببت )

َعضص بشكم كبُش  ESPو RHA. كشفج انُخبئش انخضشَبُت أٌ إدساس GGBS٪ كبذائم صضئُت نـ 30

يُضب ببعكبل.  84يٍ قىة انضغظ، وخبصت عُذ انضشعبث انًزهً، يع أعهً قىة يغضهت حصم إنً 

ُت. علاوة عهً رنك، حى بفعبنُت بقُى قىة انضغظ، بًب َخًبشً صُذاً يع انبُبَبث انخضشَب RSMحُبأث 

( وانشبكبث انعصبُت GPRاعخخذاو ًَبرس انخعهى اِنٍ، بًب فٍ رنك الاَحذاس انغبوعٍ نهعًهُت )

دقت  GPR(، نخحهُم حُبؤاث قىة انضغظ، يع إظهبس GB( وحعضَض انخذسس )ANNالاصطُبعُت )

بربث ربٍَ أكغُذ ًَكٍ أٌ َخفض اَبع ESPو RHAفبئقت. أشبس انخقُُى انبُئٍ إنً أٌ اعخخذاو 

انكشبىٌ يقبسَت ببنًىاد انخقهُذَت، وببنخبنٍ حعضَض يًبسعبث انبُبء الأكزش اعخذايت. أربخج يضًىعت 

، حُذ أظهشث GBو ANNو GPRَخبئش نقىة انضغظ فعبنُت ًَبرس  606انبُبَبث انًكىَت يٍ 

 خشيعهً انًُبرس الأ GPR(، يع حفىق ًَىرس R² > 0.85صًُعهب دقت حُبؤَت عبنُت )
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1. INTRODUCTION 

Portland cement (PC) significantly contributes to global CO2 emissions, accounting for about 5–7% of the total 

emissions, driven by population growth and infrastructure development. This highlights the urgent need for 

sustainable alternatives due to its high energy consumption and raw material usage alternatives (Abdellatief et al., 

2024c; Adamu et al., 2024a; Shah et al., 2021). In response, various high-performance concretes (HPC) have been 

developed, including PC-based ultra-high-performance concrete (PC-UHPC), known for its compact microstructure, 

strength, and long-term stability, making it suitable for extreme environments like nuclear waste storage. Recent 

trends also favor high-performance geopolymer concrete and ultra-high-performance geopolymer concrete as 

sustainable alternatives (Abdellatief et al., 2024b; Abd Ellatief et al., 2023; Tahwia et al., 2023). 

Geopolymer concretes (GPCs) consist of two main components: precursors and an alkaline activated solution 

(AAS). The precursors, which must contain alumino-silicate, often come from by-product wastes like ground 

granulated blast-furnace slag (GGBFS) and metakaolin. Several parameters influence the fresh and mechanical 

performance of GPCs, including the chemical composition, fineness of raw materials, AAS-to-binder ratio, AAS 

concentration, and curing conditions such as time and temperature (Albidah et al., 2022; Xiao et al., 2020). The 

composition of precursors plays a crucial role in GPC performance. Lower calcium (Ca) content typically requires 

higher curing temperatures, while increased Ca levels can reduce setting times and improve strength at lab 

temperatures. The silica (Si) to alumina (Al) ratio (Si/Al) is also significant; higher ratios generally enhance 

compressive strength. However, GPC application domains are constrained by this Si/Al ratio, which can be used to 

classify different GPC types (Abd Ellatief et al., 2023; He et al., 2016; Liu et al., 2022).  

Incorporating recycled materials into concrete production can significantly reduce CO2 emissions. Rice straw and 

husk are major agricultural wastes, with a global annual output of around 550 million tons. Despite this, their 

utilization rates remain low, potentially leading to environmental pollution if not managed properly. Many initiatives 

have aimed to incinerate rice straw and husk for power generation, resulting in substantial quantities of rice husk ash 

(RHA). However, only a small portion of RHA is currently used as a supplementary material. RHA is primarily 

composed of silica, found in both amorphous and partially crystalline forms, along with carbon as a major impurity 

and trace elements like potassium and calcium. Its pozzolanic activity and strong capacity for heavy metal sorption 

make RHA a promising alternative precursor for adjusting the SiO2 content in geopolymer concrete. This study 

focuses on exploring RHA as a sustainable precursor (Hesami et al., 2014; Pandey and Kumar, 2019; Wang et al., 

2021). Few studies have explored the use of RHA and eggshell powder (ESP) as precursors in geopolymer concrete, 

despite the potential benefits of recycling these by-product wastes. Utilizing RHA and ESP not only promotes 

sustainability in construction but also addresses ecological issues. To the authors' knowledge, there have been no 

recent investigations specifically focused on RHA and ESP as precursors for geopolymer concrete. This study aims to 

develop geopolymer concrete using RHA and ESP, examining the extent of the geopolymerization reaction with 

varying dosages of these materials. Additionally, the research investigates how the content of these waste materials 

affects porosity, water absorption, and compressive strength. Finally, the CO2 emissions associated with the produced 
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geopolymer concrete containing RHA and ESP will be calculated. 

2. EXPERIMENTAL PROGRAM 

2.1 Materials 

The mixtures analyzed in this study were prepared using GGBS, RHA, ESP, natural sand, and superplasticizer.  

2.1.1 GGBFS 

Ground granulated blast-furnace slag (GGBFS), used as the main precursor, was sourced from an iron factory in 

Helwan, Egypt. Its specific gravity and fineness were measured at 2.89 g/cm³ and 4.888 g/cm², respectively. The 

pozzolanic activity indexes of GGBFS were 55.5 at 7 days and 74 at 28 days. X-ray fluorescence (XRF) analysis of 

GGBFS is presented in Fig. 1. 

 

Fig. 1. Oxides of the used materials (wt., %) by XRF 

2.1.2 Rice husk ash (RHA) 

Rice husk ash (RHA) was produced by incinerating the straw at 600 °C. The resulting ash is dark gray with a specific 

gravity of 2.17. Chemical analysis of RHA was performed using X-ray fluorescence (XRF), with results summarized 

in Fig. 2.  

 

Fig. 2. Oxides of the RHA (wt., %) by XRF 
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2.1.3 Eggshell powder (ESP) 

Eggshell powder (ESP) used in this study has a specific gravity of approximately 2.70 g/cm³ and a surface area that 

enhances its reactivity. The eggshells were collected, cleaned, and dried before being ground to a fine powder and the 

major component in its chemical oxides is CaO, as illustrated in Fig. 3.  

 

Fig. 3. Oxides of the ESP (wt., %) by XRF 

 

2.1.4  River sand, alkali activation solution, and super-plasticizer  

River sand, used as fine aggregate in this study, has a grain size of less than 2 mm, adhering to the C33/C33M 

Standard Specification for Concrete Aggregates. The water absorption rate of the river sand is 1.02%, and its fineness 

modulus is 3.03. The alkali activators consisted of a mixture of sodium hydroxide (NH) solution and sodium silicate 

(SS). A 14 M NaOH solution was prepared and allowed to cool for 24 hours before being combined with SS. The 

composition of SS is 29.22% SiO₂, 13.66% Na₂O, and 57.12% H₂O (by mass), with a density of 1.39 g/cm³. This 

mixture was then allowed to mature for one day prior to its use in the geopolymerization process. For this research, 

Sika ViscoCrete®-3425 Performance Superplasticizer was utilized as a concrete admixture. It complies with the SP 

standards specified in ASTM C-494 Types G and F, as well as BS EN 934. The density of the superplasticizer is 1.08 

± 0.05 kg/liter, and it has a pH of 4.0. 

2.1.5 Mixture proportions 

In the current investigation, ten mixtures were formulated to assess the mechanical and durability properties of GM 

incorporating RHA and ESP, including a control mixture designated as M1. The mixtures involved the substitution of 

the primary precursor, GGBFS, with RHA at levels of 0% to 30%, and ESP at levels of 0% to 30% using response 

surface methodology (RSM) (Abdellatief et al., 2023; Cai et al., 2022). Three main variables were addressed to 

enhance the performance of the GM including ESP content, RHA dosage and SS/NH ratio. The mix proportions of 

the prepared mixtures are detailed in Table 1. 
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Table 1. Proportions of the prepared mixtures. 

Mixture ID 
GGBFS RHA ESP ESP Sand SP 

SS/NH 
kg/ m

3
 % kg/ m

3
 % kg/ m

3
  

M1 700 0 0 0 0 1020 24 2.5 

M2 578 0 0 17.5 97 1020 24 1.63 

M3 490 0 0 30 167 1020 24 2.5 

M4 630 0 0 10 55 1020 24 1 

M5 420 30 173 10 55 1020 24 1.03 

M6 280 30 173 30 164 1020 24 1.98 

M7 490 30 173 0 0 1020 24 2.5 

M8 590 15 87 1.0 5 1020 24 1.69 

M9 483 15 87 16 89 1020 24 2.47 

M10 385 15 87 30 167 1020 24 1 

 

2.2 Techniques for sample preparation     

The preparation technique utilized in this investigation was designed to minimize water absorption by 

the dry compounds to enhance the flowability, as shown in Fig. 4. Initially, the solid materials were 

dry-blended in the blender for 1.5 min. Subsequently, 50% of AAS and 50% of the SP, were 

combined and gradually added to the mixer, with mixing continuing for an additional 2.5 mins. In the 

next phase, the remaining AAS and SP were introduced, and mixing was conducted for an additional 

3.0 mins. Once mixture was complete, fresh samples were poured into molds. To enhance compaction 

and eliminate air bubbles, the molds were placed on a vibrating table after pouring the fresh GM. 

Previous research has shown that curing geopolymers at elevated temperatures, particularly between 

60–80 °C, is one of the most effective methods (Abdellatief et al., 2024a; Adamu et al., 2024b). 

Therefore, the GM samples were cured in a hot-air furnace at 65 °C for 48 hours before being stored 

at room temperature until testing (Ahmed M Tahwia et al., 2024; Ahmed M. Tahwia et al., 2024). 
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Fig. 5. Preparation process of GM 

2.3 Testing methods  

The physical, mechanical properties, and durability of the GM mixtures were systematically evaluated in accordance 

with relevant ASTM standards. The compressive strength (CS) of cubic samples (50 mm × 50 mm × 50 mm) was 

determined using a standard compression machine with a loading rate of 1.2 kN/s. Recognizing that the strength of 

ambient-cured geopolymers generally increases with age (Abdellatief et al., 2024a, 2023), tests were conducted at 7 

and 28 days to monitor the strength development of the GM. The dry density of the mixtures was evaluated in 

compliance with ASTM C138/C138M.  

                                       

2.4 Response surface methodology (RSM)  

In the field of scientific and mathematical techniques for optimization, RSM is a frequently utilized approach. To 

assess the practical relationship between the separate variables and the outcome, a fractional factorial research 

method is employed. The importance of the developed model is evaluated through the R² values, while the influence 

of specific factors is determined by computing the F-value. A higher F-value indicates that the related parameters 

have a more significant impact on the study's results (Fig. 5). The group developed numerical models using 

regression analysis with multiple variables based on findings from experiments on concrete characteristics. The 

polynomial simulation derived from RSM is represented in Equation 1. The anticipated response value for the 

established model is denoted by Y, with β₀ serving as the intercept and β₁ and β₂ acting as coefficients for linear 

effects. Furthermore, β₁₁ and β₂₂ indicate the parameters for quadratic effects, while β₁₂ represents the interaction 

effect between the variables. 

y =β0 + ∑     +∑     
  +∑                                          (1) 
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Fig. 5. A visual illustration of CCD 

2.5 ML Techniques 

ML techniques can be categorized into three groups: supervised, unsupervised, and semi-supervised. In this study, 

only supervised algorithms were utilized since the objective variable was identified post-data collection. Supervised 

ML techniques, which use labeled training data for accurate predictions, were employed to derive meaningful insights 

from the dataset. Specifically, methods like GPR, ANNs, and GB were applied to forecast CS of GM. 

2.5.1 Gaussian process model (GPR)   

GPR is an effective statistical method for predicting GM based on input parameters. Unlike traditional regression 

models that rely on fixed functional forms, GPR is a non-parametric approach that models the entire distribution of 

potential functions. It uses Bayesian inference to combine prior knowledge with observed data, making it adept at 

handling complex, nonlinear relationships between input and output variables. GPR not only provides point 

predictions but also generates confidence intervals, helping to assess the reliability of those predictions. Its flexibility 

allows it to work with various data types, including noisy or sparse datasets common in concrete strength tasks 

(Abdellatief et al., 2024c).   

2.5.2 ANNs (ANNs) 

ANNs are a key method in AI, valued for their simplicity, high performance, and low computational needs. Various 

types exist, including feedforward networks, recurrent networks, and radial basis function networks, all of which 

analyze relationships between independent and dependent variables. Among these, the multilayer perceptron (MLP) 

is particularly popular. An MLP comprises an input layer, one or more hidden layers, and an output layer, with 
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neurons in each layer but no direct connections between neurons of the same layer. The input and output layers have 

a number of neurons that match their respective variables, while the hidden layer's neuron count can be adjusted for 

desired outcomes. During training, datasets are inputted to refine the network's weights and biases, minimizing errors 

by comparing predicted outputs to actual values. MLPs are adaptable, updating their models with new information 

and effectively representing complex relationships. Their ability to capture nonlinear connections makes them 

especially effective for predicting concrete strength, improving accuracy across various scenarios (Abdellatief et al., 

2024b, 2024c). 

2.5.3 Gradient boosting (GB) 

Boosting is an ensemble learning technique that transforms a series of weak learners into a strong predictive model. It 

works by sequentially training learners, where each new model focuses on correcting the errors made by the previous 

ones. The training data distribution is adjusted based on the performance of each base learner, ensuring that 

misclassified samples receive more attention in subsequent iterations. Eventually, all weak learners are combined to 

create a robust final model. GB excels in predicting the CS of GM due to its capability to enhance model 

performance, manage complex relationships, and deliver precise predictions through ensemble learning (Abdellatief 

et al., 2024b, 2024c). 

 

Fig. 6. Schematic view of ML model 

2.5.4 Construction of ML models   

The prediction process outlined in Figure 4 involves three key steps: data collection, algorithm implementation, and 

model validation. First, data was gathered based on the chosen input and output variables. This dataset was then split 

into a training set (75%) and a testing set (25%). The training set was used to create an effective ML model, while the 
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testing set validated its performance. Figure 5 displays the twelve input features utilized. Three machine learning 

models—GPR, ANNs, and GB—were developed to predict the CS of GM (Paruthi et al., 2023). 

2.5.5 Models Evaluation  

To evaluate the models' accuracy, several performance criteria were considered, as outlined below: 

     
∑ (    ̂ )

 
 

∑ (    ̅ )
 

 
                                (1) 

 

    
 

 
∑ |    ̂ |
 
                          (2) 

 

     √
 

 
∑ (    ̂ )

  
             (3) 

 

where yi,  ̂ and  ̅  represent the true, predicted, and average CS results of the GM, respectively.  

                  

3. RESULTS AND DISCUSSION 

3.1 Dry density 

The GM samples were first placed in an electric furnace at a temperature of 100 ºC ±5 ºC for one day to facilitate 

drying. Afterward, the samples were cooled to reach a temperature of 25 ± 2 ºC. As shown in Fig. 7, the dry densities 

were measured to assess the impact of waste incorporation. The control mix M1 demonstrated the highest dry density 

at 2072 kg/m³, while the M6 mixture, which incorporated both types of waste, exhibited the lowest dry density at 

1996 kg/m³, marking a reduction of 3.53%. The inclusion of these wastes led to a slight decrease in dry density, 

attributable to their lower specific gravities. Among the two, ESP had a more significant effect on reducing dry 

density. The addition of RHA resulted in an approximate 1.88% decrease in dry density, whereas the contribution 

from ESP was around 1.58%. This difference can be attributed to the specific gravities of RHA and (Abdellatief et 

al., 2024b; Ifzaznah et al., 2024). as well as the more porous microstructure of samples containing RHA compared to 

those with ESP, which will be elaborated on further (Hesami et al., 2014; Pandey and Kumar, 2019; Wang et al., 

2021). 
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Fig. 7. Variation of dry density in mixes relative to waste replacement ratio 

 

3.2 Response surface for compressive strength (CS) 

Fig. 8 illustrates the compressive strength (CS) of the samples in relation to the volume percentages of ESP and RHA. 

The results indicate that the compressive strength increases with the volume percentage of ESP and RHA (Table 2), 

peaking at 5% for both materials, particularly with a high SS/NH ratio. The data shows that mixtures with a greater 

SS/NH ratio exhibit significantly higher compressive strength, achieving a maximum of 1.6. For example, the 

mixture with a 1.7 SS/NH ratio recorded a compressive strength of 48.0 MPa, compared to the control mix's 38.8 

MPa, representing a 23.71% improvement. The highest compressive strength achieved, 48 MPa, resulted from a 

blend containing 5% RHA and 1.0% ESP at a low level of ESP (around 1%). Furthermore, the results from the 

experiments validated the findings from the Response Surface Methodology (RSM), as shown in Table 3. The 

predicted compressive strength values closely matched the experimental results, confirming that RSM provides an 

accurate prediction of compressive strength. (He et al., 2016; Pandey and Kumar, 2019; Wang et al., 2021).  
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a) 

 

b) 

Fig. 8. Compressive strength results of the prepared Mixtures 

Table.2. Input and output Parameters of the prepared Mixtures using RSM 

Name Units Type Changes Std. Dev. Low High 

RHA % Factor Hard 0 0 30 

ESP % Factor Easy 0 0 30 

SS/NH  Factor Easy 0 1 2.5 

CS (7 days) MPa Response   17.9 34.8 

CS (28 days) MPa Response   23.1 48.6 

 

Table.3. Compressive strength results of the prepared Mixtures 

Group  Factor 1 Factor 2 Factor 3 Response 1 Response 2 

Run a:RHA B:ESP C:SS/NH CS (7 days) CS (28 days) 

  % %  MPa MPa 

1 1 0 0 2.5 29.6 38.8 

1 2 0 17.4 1.63169 26.3 31.2 

1 3 0 30 2.5 22.1 26.5 

1 4 0 0 1 22.9 27.8 

2 5 30 9.9 1.03 24.6 33.6 

2 6 30 29.55 1.9825 17.9 23.1 

2 7 30 0 2.5 26.9 31 

3 8 15 0.75 1.6975 33.2 48.6 

3 9 15 16.05 2.47 34.8 41.33 

3 10 15 30 1 29.6 37 
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3.3 Machine learning analysis 

Fig. 9 presents the experimental results alongside the predictions from three ML models regarding the CS of 

geopolymer concrete. The predicted CS values closely matched the experimental data for both training and testing 

phases (Abdellatief et al., 2024b, 2024c; Xiao et al., 2021). Fig. 10 displays the residuals of CS results of three 

models. The results indicated that the GPR model achieve high percentage of accuracy to predict the CS of 

geopolymer concrete. Additionally, the average R² values for the GPR, ANN, and Extreme GB models were 0.97, 

0.96, and 0.84, respectively, in the training set, and 0.84, 0.41, and 0.67 in the testing set. The GPR model exhibited 

the highest R², indicating its superior performance among the models evaluated as presented in Table 3. 

Consequently, the GPR model allows for accurate predictions of CS. In contrast, the ANN and GB models would 

require additional data and numerous experiments to achieve reliable predictions. 

   

a)                                                                b) 

 

 

 

 

 

 

 

 

 

 

 

c) 

Fig. 9. Correlation diagrams of a) GPR, b) ANN, c) GB model 
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a)                                                  b) 

 

c) 

Fig. 10. The residuals of CS of GM: a) GPR model, b) ANN model, and c) GB model. 

 

Table 3. Best results of R
2
, RMSE and MAE for three ML models 

 

Models 

 

Best 

GPR ANN GB 

R
2
 

Training 0.97 0.96 0.84 

Testing 0.84 0.41 0.67 

MAE 
Training 2.09 2.69 5.80 

Testing 4.69 7.70 7.79 

RMSE 
Training 3.65 4.16 8.44 

Testing 8.28 16.0 12.02 
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Fig. 11 illustrates the average relevance values of three models for each attribute, highlighting that the percentage of 

GGBS is the most critical factor influencing the CS predictions. This finding is consistent with previous 

experimental studies [47-49], which demonstrated that steel fibers significantly enhance the strength and 

microstructural properties of geopolymer. Among the models assessed, the GPR model exhibited the best 

performance, identifying the accurate sand and water content as the second and third most important features, 

respectively. While, the presence of coarse aggregate in geopolymer concrete contributes to a reducing the 

geopolymerization process, which ultimately decreases the material's CS strength and durability. Furthermore, the 

formation of geopolymer gel in concrete is greatly enhanced by a substantial presence of soluble silicates (such as 

NaOH and Na2SiO3) in alkali-activated concrete (R and A, 2020; Tiong et al., 2020; Xiao et al., 2020; Zhao and Li, 

2022).   

 

 

Fig. 11 The average relevance values of three models for each input parameter. 

3.4 Ecological assessment of the HPGC Samples 

Average estimates for the ecological assessment of the components used in the GM samples were gathered from the 

literature and are presented in Table 4. According to this table, NaOH, GGBFS, and SPs exhibit higher CO₂ 

emissions. The embodied energy (EE) and emission carbon (EC) values for the mixtures were calculated using data 

from credible sources, as detailed in Tables 5 and 6 (Abdellatief et al., 2023b, 2023c; Abd Ellatief et al., 2023).  
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Table 4. Inventory of cost, CE, and EE of used materials (Abd Ellatief et al., 2023; Gao et al., 2017; Hafez 

et al., 2021; Meng et al., 2019; Stengel and Schießl, 2014; Swathi and Vidjeapriya, 2023). 

ID Component CE (kg/kg) EE (MJ/kg) 

1 GGBFS 0.019 1.588 

3 ESP 0.88 0.02021 

4 RHA 0.133 1.31 

5 Fine aggregate 0.001 0.022 

6 SP 0.22 11.5 

7 Water 0.0002 0.01 

8 NaOH 0.046 1.1148 

9 Na2SiO3 1.213 0.000288 

Fig. 13 illustrates the overall EC and EE of the prepared geopolymer mixtures. Notably, the control sample, which 

contains 30% RHA, showed the lowest EE (424.95 MJ/kg). The findings of this study suggest that using alternative 

precursor materials such as RHA can significantly reduce the environmental impact of geopolymer materials. 

However, it is important to acknowledge certain limitations, including challenges in generalizing results due to 

regional variations and the influence of selected functional units. Further exploration of the relationship between 

environmental performance and cost-effectiveness, along with advancements in production technologies, could 

enhance our understanding and promote sustainability in the construction industry. 

Table 5. Calculated CE of prepared mixtures 

Mixture ID 
GGBFS RHA ESP ESP Sand SS NH SP Total CE 

kg/kg  %  %  

M1 13.3 0 0 0 0 1.02 406.355 2.99 5.28 428.945 

M2 10.982 0 0 17.5 2.91 1.02 406.355 2.99 5.28 429.537 

M3 9.31 0 0 30 5.01 1.02 406.355 2.99 5.28 429.965 

M4 11.97 0 0 10 1.65 1.02 406.355 2.99 5.28 429.265 

M5 7.98 30 3.46 10 1.65 1.02 406.355 2.99 5.28 428.735 

M6 5.32 30 553.6 30 4.92 1.02 406.355 2.99 5.28 979.485 

M7 9.31 30 0 0 0 1.02 406.355 2.99 5.28 424.955 

M8 11.21 15 38.28 1 0.15 1.02 406.355 2.99 5.28 465.285 

M9 9.177 15 48.72 16 2.67 1.02 406.355 2.99 5.28 476.212 

M10 7.315 15 0 30 5.01 1.02 406.355 2.99 5.28 427.97 
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Table 6. Calculated EE of prepared mixtures 

Mixture ID 
GGBFS RHA ESP ESP Sand SS NH SP Total CE 

kg/kg  %  %  

M1 1111.6 0 0.00 0 0.000 22.440 0.096 72.462 276.000 1482.59 

M2 10.98 0 0.00 17.5 1.960 22.440 0.096 72.462 276.000 383.941 

M3 9.310 0 0.00 30 3.375 22.440 0.096 72.462 276.000 383.684 

M4 11.970 0 0.00 10 1.112 22.440 0.096 72.462 276.000 384.080 

M5 7.980 30 226.6 10 1.112 22.440 0.096 72.462 276.000 606.720 

M6 5.320 30 226.6 30 3.314 22.440 0.096 72.462 276.000 606.263 

M7 9.310 30 226.6 0 0.000 22.440 0.096 72.462 276.000 606.938 

M8 11.210 15 113.9 1 0.101 22.440 0.096 72.462 276.000 496.280 

M9 9.177 15 113.9 16 1.799 22.440 0.096 72.462 276.000 495.944 

M10 7.315 15 113.9 30 3.375 22.440 0.096 72.462 276.000 495.659 

 

 

Fig. 13. Results of overall EC and EE of the prepared GM samples. 

4. CONCLUSIONS 

1. The use of RHA and ESP in geopolymer concrete promotes recycling and addresses ecological issues, 

contributing to sustainable construction practices. 

2. Optimal incorporation of RHA and ESP significantly enhances the compressive strength of geopolymer 

concrete, with maximum strength reaching 48 MPa at specific ratios. 

3. Response Surface Methodology (RSM) accurately predicts compressive strength based on varying 

dosages of RHA and ESP, validating the experimental results. 

4. Among the machine learning models used, Gaussian Process Regression (GPR) exhibited the highest 
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accuracy in predicting compressive strength, highlighting the potential of advanced analytical techniques 

in material science. 

5. The ecological assessment indicates that geopolymer concrete incorporating RHA and ESP results in 

lower CO₂ emissions, supporting environmental sustainability. 

6. Further studies should focus on the long-term performance of geopolymer concrete with these materials 

and explore the relationship between environmental impact and cost-effectiveness. 
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