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Abstract

Reducing pollution of environment is an important aim of this study, Box-
Jenkins models cannot predict volatility even if its residuals having ARCH
effect, the GARCH (1,1) model have been used because the residuals of
the mean equation has ARCH effect. Depending on GARCH (1,1) model
we forecasted for sixty days respectively, the forecasted weight of waste is
increasing it implies that the pollution of environment is also increased if
the waste does not disposed of in a scientific way.
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1-1 Introduction

There are several definitions of the term waste. The Solid wastes include substances
originating from both human and animal activities, usually disposed it because they are
no longer required and these useless materials (solid waste) consist of industrial, non-
industrial and domestic hazardous waste. For Examples of these solid waste are
household organic rubbish, institutional rubbish, construction waste, and street surveys.
The World Health Organization (WHO) has defined waste as some of the things that its
owner does not want it, and which haven’t any benefit, English law defines it as any
material resulting from any production process, or any material, equipment, broken,
damaged, idle, contaminated material or any excess clothing.

1-2 Type of Waste

1. Hazardous solid waste: Waste from different processes that retain the properties
of a hazardous substance that does not have alternative uses. It is a source of
danger to human health and the elements of the environment because it contains
toxic or explosive materials. The sources of these wastes include industrial and
agricultural sources, hospitals and health facilities. And pharmaceuticals

2. Non-hazardous solid waste: solid waste that does not contain substances or
components that have the characteristics of hazardous substances, and they vary
in their chemical and physical properties and include organic and inorganic
substances such as:

a. Municipal waste: waste produced from the Kkitchens of houses, shops,
markets, and restaurants through the preparation, cooking and serving of



food. It is mainly composed of organic substances that can be rotted and

damp, and contains free liquids in small quantities

b.Industrial waste: There are many industrial activities in the countries, resulting
in waste such as industrial waste. The quality and quantity of industrial solid
waste vary according to the quality of the industry and the method of
production.

c. Agricultural Waste: Agricultural waste includes all waste or waste resulting
from all agricultural, animal, and slaughterhouse activities. The most
important of these wastes are animal secretions, fodder residues and plant
harvesting waste. In general, these agricultural wastes are not an
environmental problem if they are returned to normal

d.Health waste and laboratories are all solid, liquid and gaseous wastes that
include sharp teeth, blood, body organs, chemicals, drugs, pharmaceuticals,
medical instruments and radioactive materials from various health care
institutions, medical laboratories, medical research centers, pharmaceutical

factories and warehouses, hospitals and medical clinics.

1-3Factors influencing waste increase
1. The number of population: directly proportional to the amount of waste as the

number of individuals increased the amount of waste produced by each
individual and in the countryside where the waste generated in cities and urban
areas are usually higher than in rural areas.

2. Industrial development: The increase in factories contributed to the provision of
canned food, ready-made cups, spoons and plastic and paper dishes are not
usable again made them a cause of accumulation of household waste.

3. Economic development: The waste generated by the economic level of the
country and the rapid urbanization and income levels of the population, which
are the main factors in the waste disposal process, are affected.

4. Social conditions: Adhering to tribal customs and traditions by providing large

guantities of food and beverages during the occasions, holidays and orphanages



and the absence of canned foods, which results in increasing the volume of
household waste, especially organic ones.
5. Climate conditions: The quantity of waste and the quality of waste generated

vary according to the four seasons.

1-4 Waste management

The waste management principle is based on thinking not only on the disposal of
waste, but also on finding solutions and ways of handling the huge amounts generated
each day. Waste management has a set of foundations for applying this principle,
including:

Reduce the use of raw materials.

Reuse of some solid waste components.

Extraction of energy from solid waste.

1.
2
3
4. Recycling some solid waste elements.
5. Final disposal process.

6

Daily waste management.

Chapter Two
Methodology

2-1 Building a GARCH Model ™

For building any ARCH or GARCH model in time series analysis the below steps are

required:

1. Construct an appropriate first moment model using either an ARIMA, regression, or

transfer function model, and use the residual series (a,”) of the model to exam for the

presence of GARCH effects.



2. Explain an appropriate GARCH model for a/ and perform parameter estimation;

3. Study the fitted GARCH model and refine it if necessary.

2-2 Testing GARCH Effects (Test of heteroscedasticity)

The availability of ARCH/GARCH effects may give serious model miss-specification if
they are ignored. Logically ignoring ARCH effects will give the identification of ARMA models

that are over-parameterized. In addition, as with all forms of heteroscedasticity,

Estimation assuming its absence will result in inappropriate standard errors of parameter
estimates which are typically smaller than what they should be. Therefore it is important to check
the presence of GARCH effects in time series modeling.

Two ways of testing GARCH effects are used. Number one is to check the Ljung-Box

portmanteau Q statistics of a’ . McLeod and Li show that the sample autocorrelations of a’

1

have asymptotic variance n™ and that portmanteau statistics calculated from them are

asymptotically »’if the a’ are independent. Since the sample autocorrelations of a’ are also

useful for the identification of an GARCH model for a’ .

Number two checking conditional heteroscedasticity is to use the Lagrange multiplier test of
Engle. Consider the following regression model for

2 2 .
a, ona,_; j=1,2,....m

2 2 2
a =ayta@d ; +a,ad )t ta,a_, tV, t=m+1....... n (2-1)



Where vt denotes the error term, m is a pre-specified positive integer, and n is the total number

of observations in the series. Using R* to denote the coefficient of determination from (2.1),
Engle shows that under the null

hypothesis H,:a, = a, = ...... a, =0 , nR? asymptotically follows a y* -distribution with m

degrees of freedom.
2-3 Normal Distribution !

Taking that a’ follows a GARCH (1, 1) model and &, follows a Normal

distribution, the maximum likelihood estimates of the GARCH(1,1) model for series are.

Y, =C, + 4,

ol =c,+GMA a’ +GAR o

1

2-4 Volatility

Volatility is an important factor in options trading. Here volatility means the conditionalvariance

of the underlying asset return.

2-5 Identification of a GARCH Model !

If the Ljung-Box statistics and LaGrange multiplier (LM) test are significant, then

conditional heteroscedasticity of a’ is present, and we need to identify an appropriate GARCH

model for a’. However since the GARCH (1,1) model has been shown to be appropriate in

many empirical studies, we may employ the GARCH(1,1) model at the beginning of the
analysis. As the model is estimated, diagnostic checking procedures may be followed to see if
the GARCH (1,1) model is okay, or if the orders of the GARCH model should be increased or



decreased. Instead of using this trial-and-error approach, we may use the following procedure for

the definition of a GARCH model for the {a’} series.

2-6 Ljung-Box Q-Statistic P14

Adding to the visual inspection of the plotted autocorrelation, the Ljung-Box Q-Statistic is Used
for diagnostic checking .The Ljung-Box Q-Statistic is defined by equation (2-2)

Q =n(n+2)> (n—j)'r’(e)
i1 (2-2)

Where n is the number of observation, K is the largest lag used and rj is the sample

autocorrelation function at lag j of an appropriate time seriesa,, for example.

Statistic rj fora, is then defined as

> (a - a)(a, , — a)

i = n - (2-3)
z (at - a)

The Q-Statistic is a modification of the Box-Pierce test statistic, this was suggested for testing
ARIMA and ARMA models both the test statistics are determined by the calculation of the
sample autocorrelation function for the residuals &, from those models .the similar test statistic
based on different calculation using the autocorrelation function will be high benefit for small

sample applicability, it is defined as

. K r?(e, , i
Q =n(n+2)2ﬁ~zk (2-4)



And r,-* Is

=@ a)E - Y @ a)  (2)

t=j+1

2.7 Likelihood Function of GARCH Models #!F!

By defining o = [«,,a,,....a,,B,,.... B, m]", the log likelihood functions of a may be
derived Under the Normality assumption of &, . If¢, is assumed to follow a Normal distribution.

However, practically, there
is substantial evidence showing that this assumption may not all the time be satisfactory.

For the GARCH (1.1) model, the joint density of the observations a,.....a, can be calculated as

the product of the conditional densities, conditioning on the last observations

fay o ar (@ ar) ={] | fai‘al,...ai_l(ai‘al,...ai_l)}* fa,(a,) (2-6)

Easy way, the marginal density of a, will be dropped as for ARIMA (1.1) model. For k=2,...T

the conditional density ofa, , conditioning on a,.....a, , is

1 [ a’ |
exp 1

e - 2-7
Gordor T 207 @7

And the conditional likelihood function given a, and o is:

fa,ja, akfl(ak‘al,..., a, )=

L(a,.a,,B,) = fa,,.a|ac’(a,,.a, |a,07) (2-8)




Where ai*z =a,+ ozlaf_l + B, are obtained recursively. We substitute o7 by its expected

value E(5?) :10[—05 (2-9)
e, -8,

1

Using the logarithm and ignoring the constant term we find that the log likelihood function is:

2

) 12 . oal )
I(ao’al'Bla’o- )Z_Eiz log o; + alz JF (2-10)

O

2 2 2

Wherea = (a,,....a;)  and o, = (o, ,..0;)

2-8 Model Checking of GARCH (r,m) !

For a GARCH model, the standardized shocks ¢ =a/ /o are i.i.d. random errors

following either a standard Normal or a non-Normal distribution such as the standardized
Student-t distribution. Therefore, one can check the adequacy of a fitted GARCH model by

examining the series { £, } . In particular, the sample autocorrelations and the Ljung-Box Q
statistics of £ can be used to check the adequacy of the mean (first moment) equation and those

of ¢/ can be used to test the validity of the volatility (second moment) equation.

2-9 Existence of the GARCH (1,1) process !
The GARCH(1,1) model is:
a, ~N(0,0/)

2 2 2
o, =a,+aa ,+ Blot_1 (2-11)

Where o, >0, o, >0 and B, >0.

GARCH (r,m) processes are defined recursively and conditions are needed to guarantee the
existence of stationary solutions. Now we derive such conditions for the GARCH (1,1) process

Dividing by the square root of the conditional variance of a from (2-11) . We got

g, ~ N(0)1)



k 2
o_'[2 =, +0[OZ (szl(alE(at_j + Bl)) (2_12)
k=1
Theorem 2-1BL:if the expectation of an infinite sum of non-negative random variables is finite
then the sum converges almost surely.
(see Lucas 1975 ,theorem 4,2,1 ,p. 80.)

We will use this theorem to find a condition under which the equations in (2-12) exists. Using

the unconditional expectation of both sides, resulting in

E(c?) =a,+a,> (II|_ (2,E(a; +B))
k=1

[e'e)
k
= o, + aoz (x, + B))
k-1

a, (2-13)

l1-ao,— B

1

So the unconditional expected value of &’ , is the finite and the infinite series for &2 in (2-12)

converges  to a,(1-a,—-B) provided thate,+B,<1 .In  summary, if

a,+B, <1l and «, >0 ,B, >20,we can define o’ by (2-12) and a, = ¢4/ the resulting

t

process { a, } is a stationary solution of (2-11).

2-10 Forecasting GARCH (1,1) Model
Forecasts of a GARCH model can be found by using methods similar to those of an
ARMA model. Consider the GARCH (1, 1) model in assume that the forecast origin is n. For
one-step-ahead forecast, we have

ol L =0, + alaf + Blaf (2-14)

n+

Where an2 and onz are known at t=n .therefore, the one- step ahead forecast is



2 2 2
c.)=a,+aa, +Bo;

(2-15)
For multi-step ahead forecasts, we use a/ = o¢/
2 2 2 2
Oy =a,+ (o, +B)o +ao (e —1) (2-16)
When t=n+1, the equation becomes
2 B 2 2 2 1
Tpp =+ (a+B)o, +ao,,(g,,-1) (2-17)

since E(s,,, -1|F,) =0, the two —step ahead volatility forecast at the forecast origin

n satisfies the equation
cl(2)=a,+(a,+B,)o Q)
(2-18)
In general, we have

cl(t)=a,+(a,+B)o’(t-1), £>1 (2-19)
This result is exactly the same as that of an ARMA (1, 1) model with an AR polynomial 1— (

a +B,) B. By repeated substitutions in (2-19),

the / -step-ahead forecast can be written as

a,[1- (o, +B) ]
1- a, — B1

o2(t) = +(a,+B,) o, (1) (2-20)

Therefore:

2y % _ /
i) > — =g as (oo

l-a,-B (2-21)

Provided that a, + B, <1



Consequently, the multi-step-ahead volatility forecasts of a GARCH (1, 1)model converge to the

unconditional variance of a, as the forecast horizon increases to infinity provided that Var (a, )

exists.

Chapter Three
Applications

3-1 Fitting mean equation model

The series of the study should be stationary, therefore the ADF test of the
stationarity have been used as it is shown below in table (1):

Table (1) Represents the stationarity test results.

t-Statistic Prob.*

Auagmented Dickey-Fuller test statistic -6.762935 0.0000
Test critical values: 1% level -3.449797
5% level -2.870004
10% level -2.571349

From the above table it is obviouse that the p-value is less than 0.05 that mean the
series is stationary
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Figure (1) Represents the graph of the series

After achiving the stationarity condition of the series we should fit mean equation
model as it is shown below:



Table (2) Represents the fit of mean equation model

Dependent Variable: ZT
Method: Least Squares
Date: 08/18/17 Time:17:23
Sample: 1 335

Included observations: 335

Variable Coefficient Std. Error t-Statistic Prob.

C 2.911045 0.022659 128.4703 0.0000

Frome table (2) the p-value is less than 0.05 then one can say that the model is
significant.
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Figure(2) Represents the residuals of the mean equation

Residual —— Actual

Fitted ‘

The hypothesis of ARCH has effect or not on the mean equation for this purpose
heteroskedasticity test ARCH have been used and its results are shown in table (3):

Ho: There is no ARCH effect Vs H1: there is ARCH effect

Table (3) Represents the heteroskedasticity test ARCH

Heteroskedasticity Test: ARCH
F-statistic 13.415662 Prob. F(1,332) 0.003

The P-value is less than 0.05 then the null hypothesis should be rejected, in another
word there exist ARCH effect.



We achived two main assumptions of using GARCH model which are the stationary of
the series and effect of ARCH in the mean equation mmodel then GARCH model can
be used to forecat the volatility.

3-2 Fitting GARCH (1,1)

The GARCH (1,1) model have been runned, the results of its fit is shiown in
table (4) below:

Table (4) Represents the fit of GARCH (1,1) model

Variable Coefficient Std. Error z-Statistic Prob.

C 2.836153 0.018968 149.5258 0.0000

Variance Equation

C 0.018268 0.008899 2.052893 0.0401
RESID(-1)"2 0.229532 0.102049 2.249229 0.0245
GARCH(-1) 0.649460 0.127342 5.100128 0.0000

From the above table it is obviouse that the estimators of the variance equation are
significant depending the p-value which is less than 0.05.

The residuals of the GARCH (1,1) model should be tested in order to find out that the
model is suffer from serial correlation of residuals or not

Ho: There is no serial correlation of residuals. Vs Hi: There is serial correlation of residuals.



Table (5) Represents testing of ACF and PACF

_Autocorrelation Partial Correlation AC PAC Q-Stat Prob*

-0.025 -0.025 0.2058 0.650
-0.020 -0.020 0.3394 0.844
-0.021 -0.022 0.4837 0.922
-0.012 -0.014 0.5331 0.970
-0.013 -0.014 0.5893 0.988
-0.020 -0.022 0.7303 0.994
-0.019 -0.021 0.8484 0.997
-0.024 -0.027 1.0469 0.998
-0.007 -0.010 1.0630 0.999
-0.008 -0.011 1.0856 1.000
-0.019 -0.022 1.2124 1.000
0.026 0.022 1.4500 1.000
0.007 0.005 1.4654 1.000
-0.014 -0.015 1.5320 1.000
-0.023 -0.025 1.7189 1.000
-0.009 -0.012 1.7471 1.000
-0.017 -0.020 1.8482 1.000
-0.002 -0.006 1.8502 1.000
-0.012 -0.014 1.8978 1.000
-0.016 -0.019 1.9888 1.000
0.035 0.031 2.4220 1.000
-0.015 -0.018 2.5038 1.000
-0.011 -0.014 2.5493 1.000
-0.024 -0.028 2.7659 1.000
-0.004 -0.010 2.7727 1.000
-0.009 -0.014 2.8046 1.000
0.005 0.003 2.8154 1.000
0.050 0.047 3.7167 1.000
0.004 0.005 3.7216 1.000
-0.021 -0.022 3.8807 1.000
-0.012 -0.014 3.9308 1.000
-0.003 -0.004 3.9336 1.000
-0.010 -0.015 3.9701 1.000
-0.009 -0.011 3.9989 1.000
-0.018 -0.019 4.1151 1.000
-0.006 -0.006 4.1289 1.000
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From the above table the p-value for the 36 laggs are greater than 0.05 then we can
accept the null hypothesis.

The final test is heteroskedasticity test: ARCH to figure out that the postulated model is
adequate or not , the results is shown in table (6) below:

Ho: ARCH has no effect. Vs Hi:: ARCH has effect.



Table (6) Represents the test of ARCH effect.

Heteroskedasticity Test: ARCH

F-statistic 0.093045 Prob. F(1,332) 0.7605
Obs*R-squared 0.093580 Prob. Chi-Square(1) 0.7597

From the above table it is clear that the P-value is greater than 0.05 then we can accept
Ho .
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Figure (3) Represents the graph of actual, forecasted and residuals.

Table (7) Represents the forecasted values

Laggs | Forecasted Laggs | Forecasted Laggs | Forecasted
336 2.8 356 2.83 376 2.7
337 3.1 357 2.43 377 2.9
338 3.2 358 3.03 378 2.7
339 3.3 359 2.43 379 2.6
340 3 360 2.93 380 2.7
341 3 361 2.43 381 2.8
342 3 362 2.93 382 2.8
343 2.7 363 2.33 383 2.9
344 3 364 2.53 384 2.8
345 3.1 365 2.73 385 3
346 3.1 366 3.1 386 31
347 3.1 367 3.8 387 3.3




348 2.6 368 3.9 388 3.3
349 2.8 369 3.1 389 2.9
350 2.7 370 3.1 390 2.8
351 2.53 371 3.1 391 2.8
352 2.43 372 3.3 392 3.1
353 2.43 373 3.6 393 3.3
354 2.33 374 2.7 394 3.3
355 2.53 375 2.9 395 3.1

4-1 Conclusions

1-
2-

3-

GARCH model is more adequate for the series that its residuals are affected by ARCH.
Any time series models after fitting its residuals should be tested to figure out that there
exist any pattern in the residuals or not.

GARCH models provides the forecasting for volatility for each observation.

4-2 Recommendations

In this paper according to forecasted values there exist an increasing of the weight of waste

which implies that the environment will be in danger, therefor the stack holders must warring
citizens through posters, T.V programs and seminars at the colleges to raised people awareness
towards pollution of environment.
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